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Abstract

A method for the inversion of block tridiagonal matrices encountered in electronic structure calculations is developed,
with the goal of efficiently determining the matrices involved in the Fisher–Lee relation for the calculation of electron
transmission coefficients. The new method leads to faster transmission calculations compared to traditional methods, as
well as freedom in choosing alternate Green’s function matrix blocks for transmission calculations. The new method also
lends itself to calculation of the tridiagonal part of the Green’s function matrix. The effect of inaccuracies in the electrode
self-energies on the transmission coefficient is analyzed and reveals that the new algorithm is potentially more stable
towards such inaccuracies.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Quantum transport simulations have become an important theoretical tool for investigating the electrical
properties of nanoscale systems, both in the semi-empirical approach [1–4] and full ab initio approach [5–8].
The basis for the approach is the Landauer–Büttiker model of coherent transport, where the electrical prop-
erties of a nanoscale constriction is described by the transmission coefficients of a number of one-electron
states propagating coherently through the constriction. The approach has been used successfully to describe
the electrical properties of a wide range of nanoscale systems, including atomic wires, molecules and interfaces
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[9–18]. In order to apply the method to semiconductor device simulation, it is necessary to handle systems
comprising millions of atoms, and this will require new, efficient algorithms for calculating the transmission
coefficient.

In this paper, ideas and calculations behind an algorithm that provides an improvement over a widely pop-
ular technique employed in the calculation of transmission coefficient of so-called two-probe systems [15] is
presented. A two-probe system consists of three regions: a left electrode region, a central scattering region
and a right electrode region. The electrode regions are semi-infinite periodic systems, and the scattering region
connects the two electrode regions. A one-electron tight-binding Hamiltonian is used to describe the electronic
structure of the system. The tight-binding Hamiltonian can be obtained from a semi-empirical tight-binding
description as obtained from an extended Hückel model [19] or through a first-principles approach as obtained
when using a self-consistent density-functional Kohn–Sham Hamiltonian [20].

In the pursuit of determining the electronic structure of molecules, bulk crystals and two-probe systems,
associated self-consistent DFT calculations, relevant Green’s functions and ultimately calculation of the trans-
mission of two-probe systems all involve the problem of matrix inversion in some form or another. This paper
deals with matrices of a block tridiagonal form, which lie at the center of the problems to be solved. Block
matrices will be denoted with uppercase bold letters, while lower case bold letters refer to sub-block matrices
of their uppercase counterparts.

Throughout this paper, it is assumed that block tridiagonal matrix, A, is dealt with and that it is to be
inverted in order to obtain the Green’s function matrix (or a part thereof). In the process of finding the
Green’s function matrix G ¼ A�1 that enters in DFT theory, the following equation sets up the problem [21]:
Fig. 1.
along t
off-dia
A ¼ eS�H� RL � RR: ð1Þ

In the above expression S is an overlap matrix, H is the Hamiltonian of the system and RL and RR are the

self-energies from the left and right semi-infinite electrodes, respectively. Furthermore, the matrix G depends
on the variable e that dictates the energy of an incoming one-electron coherent wave for which it is desired to
investigate the transmission through the system. The methods developed in this paper are designed for a fixed
value of e.

The individual blocks of the matrix A are denoted aij and are assumed to be dense, complex matrices along
the tridiagonal. The diagonal blocks are square matrices, while the off-diagonal blocks are typically rectangu-
lar. The structure of A for two relevant cases is shown in Figs. 1 and 2.

A method to obtain the Green’s function matrix G is now devised, much in the same spirit as [22]. In order
to do so, the matrix to be inverted, A, is augmented with the identity matrix, I.
The block-tridiagonal and sparsity structure for the Au111–AR example [17]. The matrix is of dimension 1295� 1295, split up
he diagonal in blocks of order 243, 162, 66, 79, 69, 84, 62, 62, 225, and 243 from upper left to lower right, along with corresponding
gonal blocks.



Fig. 2. The block-tridiagonal and sparsity structure for the Au111–DTB example [18]. The matrix is of dimension 943� 943, split up
along the diagonal in blocks of order 243, 162, 88, 198 and 243 from upper left to lower right, along with corresponding off-diagonal
blocks.
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ð2Þ
Each diagonal block of the identity matrix, iii has the same square block size of the corresponding block aii of
the matrix A, and are themselves identity matrices.

The organization and shape of the matrix blocks in A are related to the topology of the two probe system.
Looking at, e.g. Fig. 1, portions of the electrodes can be identified as the regions comprised of larger blocks
towards the corner of the matrix, while the more sparsely populated central region of the system is identified as
a series of smaller matrix blocks in the center of A. The top left corner of A attaches to the left electrode, while
the lower right corner attaches to the right electrode.

The expression augmented matrix ½AjI� is equivalent to the equation AG ¼ I (cf. [23]). By manipulating the
augmented matrix through a series of operations such that the left side, A, is reduced to the identity matrix I,
we will obtain the augmented matrix ½IjG� where the inverse of A, namely G ¼ A�1, can be read on the right.
This is done by illustrating the forward and backward block Gaussian elimination steps, and then combining
the results.

Calculating all of G is ultimately not of interest. Only a block gij of G to be used in further transmission
calculations will be determined. It is the particular choice of gij and the procedure for its calculation that sep-
arates the new transmission calculation method from previous algorithms.

This paper is organized as follows. The notation and block Gaussian elimination technique on which
the methods used in this paper is based on is described in Section 2. Section 3 shows how the result
of block Gaussian elimination is used to generate the Green’s function matrix G. In Section 4, the
calculation of transmission values via a traditional method and a new method is explained. The new
method is then benchmarked against the traditional, baseline method, via a consideration of computa-
tional complexity, as well as measured speedup times in Section 5. The effects of perturbed surface Green’s
function matrices on the transmission accuracy, and conclusions on which portions of G would lead to
more accurate transmission calculations is considered in Section 6. Conclusions are finally presented in
Section 7.
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2. Forward and backward block Gaussian elimination

The forward procedure is characterized with the superscript L since the elimination procedure proceeds
from the left electrode towards the right.

A block Gaussian elimination step is performed on the matrix given in Eq. (2) by multiplying the first block
row by the matrix cL

1 ¼ �a21a�1
11 and subsequently adding it to the second block row. This produces a zero

block in the (2,1) position:
ð3Þ
Next, a block Gaussian elimination step is performed by multiplying the second row by the factor
cL

2 ¼ �a32ða22 � a21a�1
11 a12Þ�1 and subsequently adding it to the third row. This produces a zero block in

the (3,2) position. A recursive routine that will complete a full forward block Gaussian elimination is
now defined.
dL
11 ¼ a11 cL

1 ¼ �a21ðdL
11Þ
�1

dL
22 ¼ a22 � a21ðdL

11Þ
�1

a12 cL
2 ¼ �a32ðdL

22Þ
�1

dL
33 ¼ a33 � a32ðdL

22Þ
�1

a23 cL
3 ¼ �a43ðdL

33Þ
�1

..

. ..
.

dL
ii ¼ aii � ai;i�1ðdL

i�1;i�1Þ
�1

ai�1;i cL
i ¼ �aiþ1;iðdL

ii Þ
�1

..

. ..
.

dL
nn ¼ ann � an;n�1ðdL

n�1;n�1Þ
�1

an�1;n cL
n�1 ¼ �an;n�1ðdL

n�1;n�1Þ
�1
The matrices dL
ii are the diagonal blocks of the resulting matrix on the left. It can be seen that each diagonal

block is calculated from the following relation:
dL
ii ¼ aii þ cL

i�1ai�1;i; where i ¼ 2; 3; . . . ; n and dL
11 ¼ a11; ð4Þ
and each row multiplication factor is:
cL
i ¼ �aiþ1;iðdL

ii Þ
�1
; where i ¼ 1; 2; . . . ; n� 1: ð5Þ
The similar backward procedure is characterized with the superscript R since the elimination procedure
moves from the right electrode towards the left. The derivation of the backwards recursive expressions
follows that of the forward elimination. Each diagonal block can be calculated from the following
relation:
dR
ii ¼ aii þ cR

iþ1aiþ1;i; where i ¼ n� 1; . . . ; 2; 1 and dR
nn ¼ ann; ð6Þ
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and each row multiplication factor is:
cR
i ¼ �ai�1;iðdR

ii Þ
�1
; where i ¼ n; . . . ; 3; 2: ð7Þ
3. Combining the two procedures

After a complete forward and backward block Gaussian elimination sweep, the augmented matrices,
named ½DLjJL� and ½DRjJR�, respectively, will look as follows where the matrices JL and JR are lower and
upper block triangular, respectively:
ð8Þ

ð9Þ
Here, the following notation was introduced:
cR
1 cR

2 � � � cR
i ¼ cR

1;2;...;i

cL
i cL

i�1 � � � cL
1 ¼ cL

i;i�1;...;1

)
where i ¼ 1; 2; . . . ; n: ð10Þ
Combining the results obtained from Eqs. (2), (8), and (9) by employing the fact that
AG ¼ I; DLG ¼ JL; DRG ¼ JR; ð11Þ
the expression
ðA�DL �DRÞG ¼ I� JL � JR ð12Þ
is examined, which can be viewed as the following augmented matrix expression:
ð13Þ
where
B ¼

a11 � dL
11 � dR

11

a22 � dL
22 � dR

22

a33 � dL
33 � dR

33

. .
.

0BBBBB@

1CCCCCA ð14Þ
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and
F ¼

�i11 �cR
2 �cR

2;3 �cR
2;3;4 � � �

�cL
1 �i22 �cR

3 �cR
3;4 � � �

�cL
2;1 �cL

2 �i33 �cR
4 � � �

�cL
3;2;1 �cL

3;2 �cL
3 �i44 � � �

..

. ..
. ..

. ..
. . .

.

0BBBBBBBB@

1CCCCCCCCA
: ð15Þ
When B is subsequently reduced to the identity matrix I, F will simultaneously be transformed into the Green’s
function matrix G. In other words, the Green’s function matrix sought for can be expressed as G ¼ B�1F. The
Green’s function matrix is:
G ¼

g11 g11cR
2 g11cR

2;3 � � � g11cR
2;...;n

g22cL
1 g22 g22cR

3 � � � g22cR
3;...;n

g33cL
2;1 g33cL

2 g33 � � � g33cR
4;...;n

g44cL
3;2;1 g44cL

3;2 g44cL
3 � � � g44cR

5;...;n

..

. ..
. ..

. . .
. ..

.

gnncL
n�1;...;1 gnncL

n�1;...;2 gnncL
n�1;...;3 � � � gnn

0BBBBBBBBBB@

1CCCCCCCCCCA
; ð16Þ
where the following expression for the diagonal blocks of the Green’s function matrix is introduced:
gii ¼ �b�1
ii ¼ �aii þ dL

ii þ dR
ii

� ��1
where i ¼ 1; 2; . . . ; n: ð17Þ
Off-diagonal entries are then calculated via appropriate multiplications with calculated diagonal block matri-
ces and factors obtained during block Gaussian elimination as follows using the notation given in Eq. (10):
gij ¼ giic
R
iþ1;iþ2;...;j�1;j for i < j ð18Þ

gij ¼ giic
L
i�1;i�2;...;jþ1;j for i > j: ð19Þ
4. Computation of transmission

The calculation of transmission t, given by the following Fisher–Lee [24] relation obtained in non–equilib-
rium Green’s function theory, can be expressed as (cf. [21,25]):
t ¼ TrfGCLGyCRg: ð20Þ

Here ‘Tr’ denotes a matrix trace operation, and the dagger denotes Hermitian conjugation. Regarding
CL and CR, the superscripts indicate left and right electrode contact leads. These matrices are defined from
the electrode self-energy [21]:
CL ¼ ı̂ RL � RL
� �y� �

; CR ¼ ı̂ RR � RR
� �y� �

; ð21Þ
where ı̂ is the imaginary unit. These matrices are only non–zero in the ð1; 1Þ block for RL and CL, and in the
ðn; nÞ block for the case RR and CR (cf. [26–28]).

Two methods are now presented that can be used to calculate the transmission t given in Eq. (20).

4.1. Coupling method

The coupling method is by far the popular method of choice in the literature when transmission is to be
calculated via the Green’s function formalism (see [26–28]). The method is introduced here, and regarded
as the baseline method to compare the new transmission calculation method to later in the paper.
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In this method, the coupling between the left and right leads is calculated, and the transmission computed
accordingly. This coupling is denoted as gn1, and it resides as the lowest left corner of the Green’s function
matrix G. The calculation of transmission for a particular energy e then becomes (cf. [26]):
t ¼ Trfgn1c
L
11gyn1c

R
nng; ð22Þ
where cL
11 ¼ ½CL�11 and cR

nn ¼ ½CR�nn. Thus we introduce the notation ½��ij which delivers the ði; jÞ-block, with
respect to A’s block structure, of the bracketed expression. The main task is to find gn1. From Eq. (16) it is
seen that the expression for this matrix is:
gn1 ¼ gnncL
n�1cL

n�2 � � � cL
2 cL

1 ; ð23Þ
and we see that the only factors cL
i involved are all those computed in a downwards block Gaussian elimina-

tion sweep. The matrix gnn in Eq. (23) can be obtained by considering the nth block from Eq. (17):
gnn ¼ ð�ann þ dL
nn þ dR

nnÞ
�1 ¼ ðdL

nnÞ
�1
; ð24Þ
since dR
nn ¼ ann. This holds similarly for the first row of the Green’s function matrix. From this, it is seen that

the first and last diagonal blocks of the Green’s function matrix correspond to the final blocks of upwards and
downwards sweeps of block Gaussian elimination, respectively, in the following manner:
g11 ¼ ðdR
11Þ
�1 and gnn ¼ ðdL

nnÞ
�1
: ð25Þ
4.2. Overlap method

A new method that seeks to compute the transmission much like the baseline coupling method, however via
a different part of the Green’s function matrix, is now introduced.

Here, the idea is again based on the transmission formula Eq. (20), however the matrices dealt with change
from being a coupling between the leads to that of a coupling between two adjacent blocks somewhere in the
center of the system. This corresponds to centering calculations around a diagonal block of A. This will
require us to calculate the Green’s function for the kth block of interest, gkk.

The name of the method arises from the fact that calculation of a diagonal block involves a sweep of block
Gauss elimination from both the upper left and lower right of A which will overlap on the block of interest.

The motivation behind this approach is to avoid the work in having to calculate an off-diagonal block of
the Green’s function matrix after a series of block Gaussian elimination sweeps. This amounts to n� 1 matrix
multiplications. In the new method, overhead will arise due to calculations involving the self-energies
RL and RR, and the corresponding matrices CL and CR. However, these computations are less expensive
matrix addition operations, and they are negligible with increasing number of matrix blocks and block
sizes.

As we shall demonstrate below, it is advantageous to choose k corresponding to the smallest diagonal block
inside the block tridiagonal matrix A. Although this approach involves some additional computations with the
self-energy matrices and their corresponding coupling matrices, this overhead is acceptable due to the savings
involved in the cheaper matrix computations for the overlap method.

Choosing an arbitrary kth diagonal block, the transmission is given in the following expression, derived in
the appendix:
t ¼ Trfgkk½CL
#k�kkg

y
kk½CR

"k�kkg; ð26Þ
where the new self-energy related terms are given by Eqs. (48) and (49) in the Appendix. Using the nonzero
structure of the respective self-energies

PL and
PR we obtain the simpler relations
CL
#1

h i
11
¼ cL

11; CR
"1

h i
11
¼ ı̂ððdR

11Þ
y � dR

11Þ ð27Þ

CR
"n

h i
nn
¼ cR

nn; CL
#n

h i
nn
¼ ı̂ððdL

nnÞ
y � dL

nnÞ ð28Þ
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and for k = 2,. . .,n�1
Table
An ov

Examp

System

Al100

AlLea

Au111

Au111

Au111

Fe–Mg

nanot

For ea
finally

Table
This ta
(GE),

Green’

Block

gn1

gnn

gkk

gn1

gnn

gkk

The th
total a
calcula
½CL
#k�kk ¼ ı̂ððdL

kkÞ
y � dL

kkÞ � cR
kk; ½CR

"k�kk ¼ ı̂ððdR
kkÞ
y � dR

kkÞ � cL
kk: ð29Þ
5. Benchmark results

The methods introduced here were implemented in C++ within Atomistix’s Atomistix ToolKit, and comput-
ing times were obtained for calculating the transmission for 10 different energies e for several different systems.
These systems have been taken from the literature, and an overview of selected examples is presented in Table 1.

5.1. Operation count

In order to determine which transmission method may be algorithmically more efficient, the quantity of
matrix factorizations, multiplications and additions related to the three different methods available is recorded
in Table 2.

In Table 3 operation counts for the calculations of the full inverse of A as well as calculation of only the
block tridiagonal part of the inverse is included. This is done for both a Gauss elimination (GE) algorithm, as
well as the new method presented in this paper.

The block tridiagonal part of the inverse is of interest for further calculations carried out in Density Func-
tional Theory (DFT) via the Green’s function formalism, and results for the full inverse are included in order
to show how the new method in this paper, though suited for the block tridiagonal calculation, is ill-suited to
calculate the entire inverse, compared to traditional methods.

Looking at operation counts in Table 2 on obtaining various parts of the Green’s function matrix G, it is
seen that all choices require n LU factorizations, where n is the number of diagonal blocks in A.
1
erview of the test examples examined in this paper

le systems

Article Order n Block order

+C7 [15] 444 5 128, 72, 16, 100, 128
d+C7 [15] 296 5 72, 72, 20, 60, 72
–AR [17] 1295 10 243, 162, 66, 79, 69, 84, 62, 62, 225, 243
–TW [16] 1155 8 243, 162, 62, 70, 53, 70, 252, 243
–DTB [18] 928 5 243, 162, 88, 198, 243
O–Fe [13,14] 228 5 54, 45, 30, 45, 54
ube4_4 – 576 4 128, 128, 192, 128

ch example the original paper related to the system, the dimension of the overall matrix A, the number of diagonal blocks n, and
the size of each of the diagonal blocks, from the upper left of A down to the lower right is listed.

2
ble illustrates the amount of basic operations performed in calculating different blocks of G via either block Gauss elimination

the coupling method or overlap method

s function sub-block operation count

Method LU-factorizations Multiplications Additions

GE n 3ðn� 1Þ n� 1
GE n 2n� 1 n� 1
GE n 4n� 2k � 1 2n� k � 1
Coupling n 3ðn� 1Þ n� 1
Overlap n 2n� 1 n� 1
Overlap n 2n� 1 nþ 1

ird, fourth and fifth columns refer to the basic matrix operations of LU-factorization, multiplication and addition. The term n is the
mount of diagonal blocks in A; and k indicates which diagonal block in the Green’s function matrix G is used for transmission
tions.



Table 3
This table illustrates the amount of basic operations performed in calculating either the full inverse G of A, or only the block tridiagonal
part of it, using different methods

Green’s function operation count

Calculation Method LU-factorizations Multiplications Additions

Full inv GE n 2n2 þ n� 2 1
2 ðn2 þ n� 2Þ

Trid inv GE n 1
2 ð3n2 þ 5n� 6Þ 1

2 ðn2 þ n� 2Þ
Full inv Paper 3n� 2 n2 þ 4n� 4 4n� 6
Trid inv Paper 3n� 2 7n� 6 4n� 6

The methods employed are block Gauss Elimination (GE), and the new method incorporating forward and backward Gaussian elimi-
nation sweeps (paper), as presented in Eq. (16). The third, fourth and fifth columns refer to the basic matrix operations of LU–
factorization, multiplication and addition. The term full inv refers to calculating the full inverse, while trid inv refers to obtaining only the
block tridiagonal part of the inverse. The term n is the total amount of diagonal blocks in A.
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In obtaining gn1, block Gauss elimination and the coupling method both require the same amount of oper-
ations to complete, and there is no advantage either way. Again, in obtaining the lower diagonal block gnn,
both block Gauss elimination and the overlap method require the same amount of matrix–matrix calculations.

The advantage of the overlap method over block Gauss elimination occurs when a central diagonal block
gkk is required. Here, only two more matrix–matrix additions over the overlap method for gnn is needed, while
for block Gauss elimination, a series of matrix–matrix multiplies and additions add up in order to back–solve
up towards the desired diagonal block. Thus the overlap method is better suited for determining diagonal
blocks than block Gauss elimination.

Looking at which block of the matrix G is cheapest to compute on the basis of Table 2, one would appar-
ently choose gnn. This, however, may not be the case since the table does not take into account differing block
sizes among the different sub-blocks in A and G. These differing sizes can lead to substantial changes in costs
regarding the basic operations of LU-factorization, matrix multiplication and matrix addition in the table.
The speedup results presented later in Section 5.2 and Table 4 will verify this.

With regard to the cost of the basic operations on a matrix block of order ni, then the amount of work for
each LU-factorization, multiplication and addition is on the order of 2=3n3

i , 2n3
i and 2n2

i , respectively.

5.1.1. Transmission calculation

To finally calculate transmission after successfully obtaining a sub-block of G, the Fisher–Lee relation (cf.
Eq. (20)) is invoked, and thus three matrix–matrix multiplications are incurred, as well as a matrix trace oper-
ation. However, the significant factor here among the different methods reviewed is that the final matrix block
dimensions in the Fisher–Lee relation may be different. Typically, due to the topology of the two-probe sys-
tem, the central region, and thus the kth diagonal block gkk, will be of smaller size than the corner blocks gnn or
gn1. Thus a significant prefactor cost in execution time can be saved by selecting the transmission method cen-
tered around the smallest Green’s function diagonal matrix block.
Table 4
This table illustrates the speedup achieved by using the new methods centered around diagonal blocks, relative to the baseline coupling
method using the off-diagonal block gn1

Speedup measurements

System Coupling – gn1 Overlap – gnn Overlap – gkk

Al100+C7 1.0000 1.2099 2.6557
AlLead+C7 1.0000 1.1916 2.0092
Au111–AR 1.0000 1.4211 3.2121
Au111–TW 1.0000 1.3721 2.8994
Au111–DTB 1.0000 1.3675 3.2537
Fe–MgO–Fe 1.0000 1.3064 1.8001
nanotube4_4 1.0000 1.2261 1.2477

The expression gn1 refers to the coupling method, while gnn and gkk refer to the overlap method performed on the nth and smallest
diagonal block, respectively. The overlap methods are always faster, and in particular those centred on the smallest, kth, diagonal block.
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Some overhead arises in choosing a central diagonal block in the shape of recalculating new matrices
½CL
#k�kk and ½CR

"k�kk for the transmission function Eq. (26) via Eqs. (27)–(29), but as these operations are cheaper
matrix–matrix addition operations on small matrices, this overhead is offset by the gains in being able to
employ smaller matrices in the more expensive matrix–matrix multiplication operations in the Fisher–Lee rela-
tion in Eq. (26).

5.1.2. Full inversion

With regard to determining the full inverse G from A, it is seen in Table 3 how block Gauss elimination
excels over the method in this paper in terms of costly LU factorizations. Although Gauss elimination has
about twice the number of matrix multiplies than the new method, Gauss elimination is still preferable when
taking into account that it only requires about a third LU factorizations compared to the new method. Thus
the new method is not suited for determining the full matrix G.

However, when requiring only the tridiagonal part of the inverse, as is the case for some DFT applications,
the new method is a better choice since it only requires on the order of n matrix–matrix multiplications, while
block Gauss elimination still requires on the order of n2 matrix–matrix multiplications.

5.2. Speedup results

For an overview of the speedup of the new methods relative to the baseline coupling method, see Table 4.
Overall, speedup improves in every case when moving from the coupling method to the overlap method. This
is not surprising, seeing how the main difference between these two methods, operation count–wise, is the lack
of extra matrix multiplications in order to obtain an off-diagonal Green’s function matrix block. Eliminating
this task will always lead to a faster method.

Performing calculations using the smallest diagonal block k over the first or nth block can also yield sig-
nificant improvements in execution time, depending on the topology of the two-probe system, and the subse-
quent block structure in A. The difference here is that it is no longer possible to ‘recycle’ one of the self-energy
terms that is assumed to be available from the outset, as well as different block size between gnn and gkk. Thus
in seeking a smaller diagonal matrix block to work with, appropriate self-energy terms must be determined
once again, and this leads to extra overhead.

However, it may pay off to select some central diagonal block over a corner diagonal block in order to cal-
culate transmission. This comes in the form of being able to work with smaller matrices, and thus matrix oper-
ation costs decrease. Crucially, matrix sizes may decrease such that memory requirements for matrix
operations can be fulfilled by lower level hardware caches, leading to significant speedup in execution time.
This effect is visible in Table 5, where significant speedup is achieved in the matrix–matrix operations involved
in the Fisher–Lee calculation.
Table 5
This table illustrates the speedup in the calculation of solely the Fisher–Lee relation (see Eq. (26)) achieved by using the new methods
centered around diagonal blocks, relative to the baseline coupling method using the off-diagonal block gn1

Speedup measurements – Fisher–Lee

System Coupling – gn1 Overlap – gnn Overlap – gkk Theoretical – n3

m3

Al100+C7 1.0000 1.0567 548.4500 512.000
AlLead+C7 1.0000 0.9546 47.4516 46.656
Au111–AR 1.0000 1.2654 170.6912 60.207
Au111–TW 1.0000 1.2788 275.6198 96.381
Au111–DTB 1.0000 1.2716 59.8502 21.056
Fe–MgO–Fe 1.0000 1.3186 7.1354 5.832
nanotube4_4 1.0000 0.9940 1.0178 1.000

The expression gn1 refers to the coupling method, while gnn and gkk refer to the overlap method performed on the nth and smallest
diagonal block, respectively. The final column indicates the theoretical speedup based on the Oðn3Þ cost of evaluating Eq. (26). The reason
for better speedup over theoretical prediction is due to improved cache usage by the smaller matrices dealt with when using gkk .
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Furthermore, as will be explored in Section 6 concerning transmission accuracy, depending on the system,
central matrix blocks may be less prone to perturbation from inaccurately calculated electrode surface Green’s
function matrices. This, however, varies from system to system, as well as incoming electron wave energies e.

6. Transmission accuracy

It has been shown that any block of the Green’s function matrix can be used in order to calculate trans-
mission and a new strategy employing diagonal blocks of G was developed. The question now is which part
of G might be used in order to achieve best accuracy in determining transmission. This section suggests that an
investigation of the accuracy achieved for a given block may lead to informed choices. The problem of the
selection of which matrix block is best concerning accuracy comes from the fact that in practice the self-ener-
gies of the electrodes, rL

11 and rR
nn, are not computed exactly. This is because in the Green’s function formalism

approach, the surface Green’s function matrices for the electrodes (and hence their corresponding self-ener-
gies) are typically determined through an iterative procedure [29] that only converges to the correct retarded
Green’s function matrix when a small positive imaginary perturbation is applied. This means that transmis-
sions are calculated for a slightly perturbed matrix eA, where the corner blocks a11 and ann are perturbed to
some degree through the inexact self-energies.

The matrix A here will denote the case when no imaginary perturbation is used and this can be done by
employing a different manner to converge the surface Green’s function matrices, such as a wave function
matching [30–32] approach. To investigate how this imaginary perturbation ultimately affects the Green’s func-
tion matrix that transmissions are calculated with, the inverses of an unperturbed case and a perturbed case are
compared. The perturbation on A is described as the added matrix P, defined as zero everywhere, except the
corner blocks p11 and pnn, that correspond to the corner blocks a11 and ann, both in size and location.
ð30Þ
The perturbation matrix, as seen in Eq. (30), is divided into 9 blocks, where the empty space denotes areas with
elements equal to zero. In a similar manner, the inverse G ¼ A�1 is subdivided into the same block sizes.
ð31Þ
To investigate the effect of the perturbation P the derivation of eG ¼ eA�1 is carried out:
eG ¼ ½AðIþGPÞ��1 ¼ ðIþGPÞ�1
G: ð32Þ
If the perturbation is assumed to be small, such that the spectral radius satisfies qðGPÞ < 1, then the first
inverse term can be expressed via a geometric series.
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eG ¼ ðIþGPÞ�1
G ¼ G�GPGþGPGPG� � � � ð33Þ
Thus it can be seen that the difference in the perturbed and unperturbed inverses should be dominated by the
term GPG. If G is subdivided into row and column blocks, as follows, it will be possible to proceed and derive
a relatively compact expression for the structure of this first order correction term.
ð34Þ
such that
b1 ¼

g11

..

.

gn1

0BB@
1CCA; bn ¼

gn1

..

.

gnn

0BB@
1CCA ð35Þ
and
c1 ¼ g11 � � � g1nð Þ; cn ¼ gn1 � � � gnnð Þ: ð36Þ
With this notation, the first order perturbation term is written as follows:
GPG ¼ b1p11c1 þ bnpnncn: ð37Þ

It can be seen how the outer-product form of this expression will yield a dense matrix GPG, since G can

generally be assumed to be dense. This indicates that the correction term’s effect will depend directly on the
full structure of G, and thus no prediction can be made about the effect of the perturbation on G, without
calculating G itself.

We look at the first order perturbation at block ði; jÞ:

½GPG�ij ¼ ½b1p11c1 þ bnpnncn�ij ¼ gi1p11g1j þ ginpnngnj;
where the element gin describes the amplitude of an electron propagating from site i to site n in the system. For
most systems, this will decay as a function of the distance between orbitals at sites i and n, and thus the error
should be smallest for Green’s function blocks in the center of the cell, i.e., as far as possible from the elec-
trodes. Thus we can expect choosing central blocks in G should lead to more accurate transmission calcula-
tions for most systems.

6.1. Numerical example with random perturbation

The effect of a perturbation of the electrode’s surface Green’s function matrices on the Green’s function G

itself is here illustrated by a numerical example. The Hamiltonian matrix H and overlap matrix S associated
with Au111–AR is taken, and the matrix to be inverted is constructed as
A ¼ H� eS; where e ¼ 1:0: ð38Þ

The corner blocks of A, namely a11 and ann, are then perturbed with matrices p11 and pnn. The elements of

p11 and pnn are computed as:
p11  pij ¼ aijaij; where aij 2 a11; and ð39Þ
pnn  pkl ¼ aklakl; where akl 2 ann: ð40Þ
where the factors aij and akl are normally distributed with zero mean and standard deviation 10�5.
Fig. 3 shows the results of the average difference of 100 perturbed inversions eG compared to G. From this

figure, it is seen that for this particular choice of system (H and S) and energy (e), the perturbation from the
iterated self-energies cause the inverse to be most inaccurate at the corner diagonal blocks. Thus, choosing the



Fig. 3. The figure above illustrates the average element-wise difference expressed as log½meanðG� eGðpÞÞ� for p ¼ 1; . . . ; 100. The matrix G

corresponds to the Au111–AR example [17]. Element-wise differences range from about the same order down to about 18 orders of
magnitude smaller. The dark lines outline the original block tridiagonal structure of the original matrix A. The logarithm employed is the
base 10 logarithm. In this particular example for choice of electron energy e and A, the diagonal blocks in the center of the matrix suffer
least in terms of accuracy.
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overlap method as the transmission calculation method would be on average best served by choosing a block
towards the center of the matrix, where the perturbation has the least effect. This choice is further motivated
by the fact that the center blocks typically are of smaller size, and matrix operations would be faster than oper-
ations with the corner diagonal blocks.

A problem with this analogy lies in the fact that one can not predict which Green’s function matrix block
would provide more accurate transmission results (see Eq. (37)), without calculating the Green’s function
matrix in the first place. This lends prediction to be prohibitive in general, when computing transmissions.
The best choice of action is then relying on the usual behavior of most two-probe systems as well as choosing
the fastest calculation method, leading us to pick a diagonal block towards the center of the system, which are
typically the least affected by the electrodes as well as the smallest in size.

7. Conclusion

This paper developed and introduced a new, faster method of calculating transmission for two-probe sys-
tems by using diagonal block matrices from the Green’s function matrix, gii, rather than the coupling method
found extensively in the literature that uses the corner off-diagonal block gn1.

This is done by developing a method for calculating any block matrix from the Green’s function matrix G

based on a series of Gauss eliminations carried out on the original matrix A.
To calculate transmission via a diagonal block of the Green’s function matrix G, upwards and downwards

block Gaussian elimination is performed that terminates overlapping over akk; and gkk is calculated (cf. Eq.
(17)).

Furthermore, the related coupling matrices (usually obtained via self-energy) used in the transmission for-
mula Eq. (26) are calculated via Eqs. (27)–(29), for the new, extended electrodes. This approach dispenses with
the need of a series of matrix–matrix multiplications compared to the coupling method (cf. Eq. (23)) in
exchange for cheaper matrix–matrix addition operations.

Execution time measurements indicated that centering transmission calculations on the Green’s function
matrix’s diagonal blocks was preferable, in that a series of matrix–matrix multiplications would be saved as
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well as centering on smaller diagonal matrix blocks offset the cost of re-calculating self-energy matrices. Fur-
thermore, the ability to choose smaller block matrices lends itself to the possibility of far better cache usage,
and hence greater performance gains.

Perturbation analysis revealed that it is not possible to determine the effect of perturbation in the electrode
self-energy matrices on the accuracy of the Green’s function, without explicitly calculating the Green’s func-
tion matrix. This eliminates the ability to predict which Green’s function matrix block would be an ideal
choice for the calculation of a two-probe system’s transmission with respect to accuracy. However, due to
the behavior of most two-probe systems, a central diagonal block choice is expected to yield more accurate
results.

Acknowledgments

This work was supported by Grant No. 2106-04-0017, ‘‘Parallel Algorithms for Computational Nano-Sci-
ence”, under the NABIIT program from the Danish Council for Strategic Research.

Appendix. Derivation of Eq. (26) for the Transmission

We commence with the expression in Eq. (1). As shown in (e.g., Golub and Van Loan [33]) Section 3.2.1, we
can represent a Gauss-elimination step as a matrix multiplication with a ‘‘Gauss transformation”. The same is
true for the block Gauss-elimination steps we use here, and thus we express a series of downwards Gauss-elim-
inations that terminate on row k by E#k. Similarly, a series of upwards Gauss-eliminations terminating on row
k is denoted by E"k. We then write the combination of Gauss-elimination sweeps that produce a matrix Zk as
follows:
Zk ¼ E#kAE"k: ð41Þ

Due to the structure of A, the matrix Zk is block diagonal as shown in Fig. 4. Given Zk, we can write the

Green’s function matrix as
G ¼ A�1 ¼ E"kZ�1
k E#k: ð42Þ
We can then insert this expression into the Fisher–Lee relation from Eq. (20), to obtain
t ¼ TrfðE"kZ�1
k E#kÞCLðE"kZ�1

k E#kÞyCRg ¼ TrfE"kZ�1
k E#kC

LEy#kðZ�1
k Þ
y
Ey"kC

Rg

¼ TrfZ�1
k E#kC

LE
y
#kðZ�1

k Þ
y
E
y
"kC

RE"kg ¼ TrfZ�1
k CL

#kðZ�1
k Þ
yCR
"kg ð43Þ
where we have introduced
CL
#k ¼ E#kC

LE
y
#k and CR

"k ¼ E
y
"kC

RE"k: ð44Þ
To derive Eq. (43) we used that the trace is invariant under matrix commutation [34].
Fig. 4. The zero/nonzero structure of Zk and Z�1
k .
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Eq. (43) can be further simplified. First note that both Zk and Z�1
k have the special zero/nonzero structure

shown in Fig. 4. Next, note that CL has nonzero elements in its (1,1)-block only, and hence the nonzeros in CL
#k

are confined to upper left blocks, as shown in Fig. 5. Similarly, the nonzeros of CR
"k are confined to the bottom

right blocks. Using the zero/nonzero structure of these matrices, it follows from the derivation illustrated in
Fig. 6 that:
t ¼ TrfZ�1
k CL

#kðZ�1
k Þ
yCR
"kg ¼ Trf½Z�1

k �kk½CL
#k�kk½Z

�1
k �
y
kk½CR

"k�kkg: ð45Þ
Fig. 5. The zero/nonzero structure of CL and CL
#k .

Fig. 6. Illustration of the derivation of Eq. (45) using the zero/nonzero structure of Figs. 4 and 5.
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Hence, we require only the kth diagonal block of Z�1
k , and we note that this corresponds to the kth diagonal

block of the Green’s function matrix G via Eq. (17). Thus ½Z�1
k �kk ¼ gkk; and ½Z�1

k �
y
kk ¼ g

y
kk.

Next we consider ½CL
#k�kk and ½CR

"k�kk. By means of Eq. (1) we can obtain the expression of a self-energy, e.g.,
RL, and via Eq. (21) we now determine our desired matrix for the transmission calculation:
½CL
#k�kk ¼ ½E#k ı̂ðRL � ðRLÞyÞEy#k�kk ¼ ı̂½E#kððeS�H� RR � AÞ � ðeS�H� RR � AÞyÞEy#k�kk

¼ ı̂½E#kðAy � A� ðRR � ðRRÞyÞÞEy#k�kk

¼ ı̂ð½E#kAEy#k�
y
kk � ½E#kAEy#k�kkÞ � ı̂½E#kðRR � ðRRÞyÞEy#k�kk: ð46Þ
Here we used that both S and H are Hermitian and therefore vanish in the expression. The first term
involving A is simplified via the fact that the ðk; kÞ-subblock of the block tridiagonal E#kA remains invariant
under the column operations by Ey#k, and thus ½E#kAEy#k�kk ¼ dL

kk. The last term, involving self-energies, is sim-
plified via Eq. (21). We get
½CL
#k�kk ¼ ı̂ððdL

kkÞ
y � dL

kkÞ � ½E#kCREy#k�kk: ð47Þ
Since E#k represents downwards elimination, the ðk; kÞ-block in E#kC
REy#k is left unaltered, i.e.,

½E#kCREy#k�kk ¼ ½CR�kk ¼ cR
kk. Hence:
½CL
#k�kk ¼ ı̂ððdL

kkÞ
y � dL

kkÞ � cR
kk: ð48Þ
Following a similar procedure, we obtain:
½CR
"k�kk ¼ ı̂ððdR

kkÞ
y � dR

kkÞ � cL
kk: ð49Þ
Thus we have all the terms necessary for the calculation of transmission via Eq. (43).
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